Ca2+-sequestering smooth endoplasmic reticulum in an invertebrate photoreceptor. I. Intracellular topography as revealed by OsFeCN staining and in situ Ca accumulation
نویسنده
چکیده
Two ultrastructural approaches were used in photoreceptor cells of the leech, Hirudo medicinalis, to (a) investigate the intracellular topography of the smooth endoplasmic reticulum (SER) and (b) identify among the various subregions of the SER those which might function as Ca-sequestering sites. When the cells are prefixed with CaCl2-containing glutaraldehyde and postfixed with osmium tetroxide-ferricyanide (OsFeCN), only a part of the total SER is specifically stained. The stained SER cisternae include the submicrovillar cisternae (SMC), subsurface cisternae (SSC), the nuclear envelope, Golgi-associated SER, paracrystalline SER, and SER associated with glycogen areas. An extensive tubular SER cisternal system always remains unstained. When the cells are permeabilized by saponin and subsequently incubated with Ca2+, MgATP, and oxalate, the SMC (Walz, 1979, Eur. J. Cell Biol. 20:83-91), the SSC and the nuclear envelope contain electron-opaque Ca-oxalate precipitates indicating their ability to function as an effective Ca2+ sink. The results show that the very elaborate SER in this photoreceptor cell includes many functionally heterogeneous subregions. Of special physiological significance are those components (SMC and SSC) which are effective in Ca2+-buffering in the immediate vicinity of the plasma membrane.
منابع مشابه
Ca2+-sequestering smooth endoplasmic reticulum in an invertebrate photoreceptor. II. Its properties as revealed by microphotometric measurements
Microphotometric measurements are used to investigate the functional properties of Ca2+-sequestering smooth endoplasmic reticulum (SER) in leech photoreceptors. 10-30 intact cells are mounted in a perfusion chamber, placed between crossed polarizers in a microphotometer, and permeabilized by saponin treatment. Subsequent perfusion with solutions containing Ca2+, MgATP, and oxalate leads to Ca u...
متن کاملEvidences on the existence of a new potassium channel in the rough endoplasmic reticulum (RER) of rat hepatocytes
Introduction: we have recently reported the presence of two potassium currents with 598 and 368 pS conductance in the rough endoplasmic reticulum (RER) membrane. The 598 pS channel was voltage dependent and ATP sensitive. However, the 368 pS channel was rarely observed and its identity remained obscure. Since cationic channels in intracellular organelles such as mitochondria and RER play imp...
متن کاملAnalysis of Ca(2+) uptake into the smooth endoplasmic reticulum of permeabilised sternal epithelial cells during the moulting cycle of the terrestrial isopod Porcellio scaber.
In terrestrial isopods, large amounts of Ca(2+) are transported across anterior sternal epithelial cells during moult-related deposition and resorption of CaCO(3) deposits. Because of its toxicity and function as a second messenger, resting cytosolic Ca(2+) levels must be maintained below critical concentrations during epithelial Ca(2+) transport, raising the possibility that organelles play a ...
متن کاملThyrotropin-releasing hormone mobilizes Ca2+ from endoplasmic reticulum and mitochondria of GH3 pituitary cells: characterization of cellular Ca2+ pools by a method based on digitonin permeabilization.
Treatment of 45Ca2+-loaded GH3 pituitary cells with various concentrations of digitonin revealed discrete pools (I and II) of cellular 45Ca2+ defined by differing detergent sensitivities. Markers for cytosol and intracellular organelles indicated that the two 45Ca2+ pools were correlated with the two major cellular Ca2+-sequestering organelles, endoplasmic reticulum (I) and mitochondria (II). S...
متن کاملGating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes
Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 93 شماره
صفحات -
تاریخ انتشار 1982